3.333 \(\int \frac{x^3}{(d+e x^2) \sqrt{a+b x^2+c x^4}} \, dx\)

Optimal. Leaf size=137 \[ \frac{\tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{2 \sqrt{c} e}-\frac{d \tanh ^{-1}\left (\frac{-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt{a+b x^2+c x^4} \sqrt{a e^2-b d e+c d^2}}\right )}{2 e \sqrt{a e^2-b d e+c d^2}} \]

[Out]

ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])]/(2*Sqrt[c]*e) - (d*ArcTanh[(b*d - 2*a*e + (2*c*d -
b*e)*x^2)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x^2 + c*x^4])])/(2*e*Sqrt[c*d^2 - b*d*e + a*e^2])

________________________________________________________________________________________

Rubi [A]  time = 0.157354, antiderivative size = 137, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.172, Rules used = {1251, 843, 621, 206, 724} \[ \frac{\tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{2 \sqrt{c} e}-\frac{d \tanh ^{-1}\left (\frac{-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt{a+b x^2+c x^4} \sqrt{a e^2-b d e+c d^2}}\right )}{2 e \sqrt{a e^2-b d e+c d^2}} \]

Antiderivative was successfully verified.

[In]

Int[x^3/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])]/(2*Sqrt[c]*e) - (d*ArcTanh[(b*d - 2*a*e + (2*c*d -
b*e)*x^2)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x^2 + c*x^4])])/(2*e*Sqrt[c*d^2 - b*d*e + a*e^2])

Rule 1251

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{x^3}{\left (d+e x^2\right ) \sqrt{a+b x^2+c x^4}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{x}{(d+e x) \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{2 e}-\frac{d \operatorname{Subst}\left (\int \frac{1}{(d+e x) \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{2 e}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x^2}{\sqrt{a+b x^2+c x^4}}\right )}{e}+\frac{d \operatorname{Subst}\left (\int \frac{1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac{-b d+2 a e-(2 c d-b e) x^2}{\sqrt{a+b x^2+c x^4}}\right )}{e}\\ &=\frac{\tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{2 \sqrt{c} e}-\frac{d \tanh ^{-1}\left (\frac{b d-2 a e+(2 c d-b e) x^2}{2 \sqrt{c d^2-b d e+a e^2} \sqrt{a+b x^2+c x^4}}\right )}{2 e \sqrt{c d^2-b d e+a e^2}}\\ \end{align*}

Mathematica [A]  time = 0.11596, size = 133, normalized size = 0.97 \[ \frac{\frac{d \tanh ^{-1}\left (\frac{2 a e-b d+b e x^2-2 c d x^2}{2 \sqrt{a+b x^2+c x^4} \sqrt{e (a e-b d)+c d^2}}\right )}{\sqrt{e (a e-b d)+c d^2}}+\frac{\tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{\sqrt{c}}}{2 e} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

(ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])]/Sqrt[c] + (d*ArcTanh[(-(b*d) + 2*a*e - 2*c*d*x^2 +
 b*e*x^2)/(2*Sqrt[c*d^2 + e*(-(b*d) + a*e)]*Sqrt[a + b*x^2 + c*x^4])])/Sqrt[c*d^2 + e*(-(b*d) + a*e)])/(2*e)

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 204, normalized size = 1.5 \begin{align*}{\frac{1}{2\,e}\ln \left ({ \left ({\frac{b}{2}}+c{x}^{2} \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{4}+b{x}^{2}+a} \right ){\frac{1}{\sqrt{c}}}}+{\frac{d}{2\,{e}^{2}}\ln \left ({ \left ( 2\,{\frac{a{e}^{2}-deb+c{d}^{2}}{{e}^{2}}}+{\frac{be-2\,cd}{e} \left ({x}^{2}+{\frac{d}{e}} \right ) }+2\,\sqrt{{\frac{a{e}^{2}-deb+c{d}^{2}}{{e}^{2}}}}\sqrt{c \left ({x}^{2}+{\frac{d}{e}} \right ) ^{2}+{\frac{be-2\,cd}{e} \left ({x}^{2}+{\frac{d}{e}} \right ) }+{\frac{a{e}^{2}-deb+c{d}^{2}}{{e}^{2}}}} \right ) \left ({x}^{2}+{\frac{d}{e}} \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}-deb+c{d}^{2}}{{e}^{2}}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x)

[Out]

1/2/e*ln((1/2*b+c*x^2)/c^(1/2)+(c*x^4+b*x^2+a)^(1/2))/c^(1/2)+1/2*d/e^2/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*
(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(x^2+d/e)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*(c*(x^2+d/e)^2+(b*e-2*c*d)/e
*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\sqrt{c x^{4} + b x^{2} + a}{\left (e x^{2} + d\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^3/(sqrt(c*x^4 + b*x^2 + a)*(e*x^2 + d)), x)

________________________________________________________________________________________

Fricas [B]  time = 7.3943, size = 2360, normalized size = 17.23 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(c*d^2 - b*d*e + a*e^2)*c*d*log(-((8*c^2*d^2 - 8*b*c*d*e + (b^2 + 4*a*c)*e^2)*x^4 - 8*a*b*d*e + 8*a^
2*e^2 + (b^2 + 4*a*c)*d^2 + 2*(4*b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d*e)*x^2 - 4*sqrt(c*x^4 + b*x^2 + a)*sq
rt(c*d^2 - b*d*e + a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e))/(e^2*x^4 + 2*d*e*x^2 + d^2)) + (c*d^2 - b*d*e + a
*e^2)*sqrt(c)*log(-8*c^2*x^4 - 8*b*c*x^2 - b^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(c) - 4*a*c))/(c^
2*d^2*e - b*c*d*e^2 + a*c*e^3), -1/4*(2*sqrt(-c*d^2 + b*d*e - a*e^2)*c*d*arctan(-1/2*sqrt(c*x^4 + b*x^2 + a)*s
qrt(-c*d^2 + b*d*e - a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e)/((c^2*d^2 - b*c*d*e + a*c*e^2)*x^4 + a*c*d^2 - a
*b*d*e + a^2*e^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x^2)) - (c*d^2 - b*d*e + a*e^2)*sqrt(c)*log(-8*c^2*x^4 - 8*b*
c*x^2 - b^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(c) - 4*a*c))/(c^2*d^2*e - b*c*d*e^2 + a*c*e^3), 1/4
*(sqrt(c*d^2 - b*d*e + a*e^2)*c*d*log(-((8*c^2*d^2 - 8*b*c*d*e + (b^2 + 4*a*c)*e^2)*x^4 - 8*a*b*d*e + 8*a^2*e^
2 + (b^2 + 4*a*c)*d^2 + 2*(4*b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d*e)*x^2 - 4*sqrt(c*x^4 + b*x^2 + a)*sqrt(c
*d^2 - b*d*e + a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e))/(e^2*x^4 + 2*d*e*x^2 + d^2)) - 2*(c*d^2 - b*d*e + a*e
^2)*sqrt(-c)*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(-c)/(c^2*x^4 + b*c*x^2 + a*c)))/(c^2*d^2*e
- b*c*d*e^2 + a*c*e^3), -1/2*(sqrt(-c*d^2 + b*d*e - a*e^2)*c*d*arctan(-1/2*sqrt(c*x^4 + b*x^2 + a)*sqrt(-c*d^2
 + b*d*e - a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e)/((c^2*d^2 - b*c*d*e + a*c*e^2)*x^4 + a*c*d^2 - a*b*d*e + a
^2*e^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x^2)) + (c*d^2 - b*d*e + a*e^2)*sqrt(-c)*arctan(1/2*sqrt(c*x^4 + b*x^2
+ a)*(2*c*x^2 + b)*sqrt(-c)/(c^2*x^4 + b*c*x^2 + a*c)))/(c^2*d^2*e - b*c*d*e^2 + a*c*e^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\left (d + e x^{2}\right ) \sqrt{a + b x^{2} + c x^{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(e*x**2+d)/(c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral(x**3/((d + e*x**2)*sqrt(a + b*x**2 + c*x**4)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError